Environmental Chemistry Field Trip – Day 1, part 3

Overview of Narrow Gauge Spring
Our final destination of the day was Narrow Gauge Spring, which is on the backside of the Mammoth Terraces area. Apparently, there’s only one other place in the entire world – somewhere in China – that has exactly the same kind of conditions as this place.

The process of making this kind of formation requires rainwater, healthy microbe-supporting soil, limestone, and heat. It goes something like this: rainwater seeps down through the soil, where lots of healthy microbial activity uses up the oxygen in it and excretes plenty of extra carbon dioxide into it, making it more acidic. The water sinks into the ground and runs into the limestone, which is Calcium Carbonate (CaCO3). Calcium Carbonate doesn’t dissolve well in plain water at all, but there are two things that make it dissolve better: acid and heat. The heat from the magma under the park and the acidity of the water combine to dissolve a whole lot of the limestone. Then, somewhere, the heated water gets forced back up to the surface through a crack.

Where the water comes back in contact with the air, it can let off the extra carbon dioxide and heat. This doesn’t happen very fast in a deep pool, since this can only happen in a thin area near the top. Where the water overflows, though, it’s very shallow, and the carbon dioxide and heat can escape very quickly into the air. This makes the water suddenly become less acidic and less hot, and all that extra calcium carbonate can no longer stay dissolved. It crystallizes, making a hard calcium carbonate “shell” along the edge of the pool. The edge can end up growing some much over time that it forms an overhang with stalactite-like formations underneath it:

Another view of Narrow Gauge Spring

You can just make out an overhanging area in the upper-left of the photograph.

It was fun taking measurements of the water here. Water freshly removed from a pool initially showed up off the scale on our “Total Dissolved Solids” meters, but if you waited a few seconds the reading would drop down to where the meters could read it, and keep falling. Out of the pool, the water was cooling off quickly enough that the extra dissolved Calcium Carbonate was un-dissolving out of the water in tiny bits even as we stood there.

The water appeared to be about 56°C at the top of the pool where it was initially emerging. If you want an idea of not only that I am a nerd but what kind of nerd I am, I will mention that I think of this as “stewpot temperature”, and often wonder if there is any useful or tasty effects to be discovered in the microbial processes done by thermophilic microbes that live in these conditions. I’ll find out one of these days…

Oh, and a couple of bits of trivia about the Apollinaris Spring area from a couple of posts ago. Firstly, it was apparently named after a spring in Germany with the same name. Secondly, we briefly discussed the chemistry of carbon dioxide in water in class this week, and it turns out that the pH of 5.9 that Apollinaris Spring has is probably more basic than plain distilled water would be.

Now, anyone who’s had basic chemistry is probably a little baffled by this – after all, isn’t a pH of 7 that of pure water by definition? The answer is yes, but we’re not talking about pure water, we’re talking about water exposed to the air, where carbon dioxide can dissolve into the water. Working through the mathematics involved showed that distilled water should end up with a pH of about 5.6-5.7, at least at “standard temperature and pressure” (roughly sea-level air pressure and a temperature of around 72°F.). I have a suspicion as to why the Apollinaris Spring water seems less acidic than I might have expected, though.

They actually took our Apollinaris Spring water and ran it through an analytical instrument of some kind (I wasn’t there for it, but the description of the results made it sound like it was a “liquid chromatography” type of device). They found NO nitrates or nitrites in it. Since we’re talking about spring water percolating through healthy soil, I would have expected some nitrogen. I noticed, though, that although they checked for nitrite and nitrate, they didn’t check for reduced nitrogen – that is, ammonia.

I managed to score a tiny vial of the water during lab last Wednesday. When I get a chance to hit the pet store for some ammonia testing supplies, I’ll check that. If it’s there, it might explain the possibly slightly higher than expected pH. Similar to what happens to carbon dioxide and water, when ammonia (NH3) is dissolved into water(H2O), there tends to be some recombination of the atoms to make “ammonium hydroxide” (NH4OH), which is basic.

I don’t know if that’s what’s going on, but I intend to check.

There’s one more post worth of Field Trip stuff, and then I’ll be back onto other topics. Here’s a hint of what might come up, though: can anybody tell me what the effective pore size of pectin and cornstarch gels might be?…

Environmental Chemistry Field Trip – Day 1, Part 3

There were two more stops on the first day of the field trip. After Appolinaris Spring, we stopped off at the “Sheepeater Cliffs”, named after the local natives’ use of mountain-goats for food. I did get a picture of the small cliff, but who cares. You’ve seen one columnar basalt formation, you’ve seen them all, right?

Oh, well, in case you haven’t seen even one yet, here’s one:

Columnar Basalt Formation: Sheepeater Cliffs, Yellowstone National Park

It’s actually kind of interesting – despite the fact that Yellowstone is essentially one gigantic crater left by a volcano explosion, lava doesn’t seem to be a common feature at all. The reason seems to be that the volcanic explosion was an explosion of steam, not melted rocks. Put simply, water seeps down into the ground and gets trapped on top of magma, which is naturally extremely hot. The water can’t boil away as steam, though, because it’s trapped under all that rock, which keeps the pressure high enough that it stays liquid even when it’s superheated. Then, one day (about 600,000 years ago, if I remember correctly) somewhere a crack opened up enough to start letting the water flow out. When it got out from under all the rocks, the reduction of pressure let the superhot water suddenly explode into a cloud of steam. As the water shot out as steam, it let off some of the pressure on the water still trapped underground, which could then also explode into steam….and the whole area got flung into the air on the exploding, superhot steam. Kind of like the way a perfectly innocent looking bottle of heavily carbonated beverage can suddenly erupt in a spray of bubbles if you open it too suddenly.

Or at least, that’s my I’m-not-a-Geologist understanding of the process. The point is, melted rocks aren’t really a big part of the park area’s surface, so it’s interesting to see the basalt cliffs here. The giant hexagonal columns are actually huge crystals of that formed as the melted rock solidified.

This was just a brief stop, though. We piled back into the field-trip vehicles and headed for the Mammoth area of the park. I was originally going to cram that stop into this post, too, but I’m still editing it down to make it less pedantic. Unless my Vast Horde of Loyal Readers would LIKE pedantic…

Incidentally, the College Blogging Scholarship submissions are done as of midnight tonight. Or midnight tomorrow morning, depending on whether you think of midnight as the end or beginning of a day. Finalists get announced on Monday. Here’s hoping I’ll be one of them. That also means that if anyone has any suggestions or comments about how I’m running the blog, the topics I’m picking, and so on, now would be a good time to speak up…

Meanwhile, a couple more posts on the field trip coming up (possibly another one later today) and then I’ll move on to other topics.

Environmental Chemistry Field Trip – Day 1, part 2

Our next stop was Appolinaris Spring, which seems to be an uncommon thing in Yellowstone National Park: ordinary springwater. No sulfuric acid, no steam, just plain old water that sinks into the ground and then comes back up later. For most of the park’s history, it seems like this used to be a popular place to stop to get a drink of water.

water emerging from small copper pipes
Although the signs around the spring now all suggest that you really shouldn’t drink it, at least not without filtering it first, I’m kind of kicking myself now for not having tasted it. Perhaps I’ll have to go back on my own time and try it.

Our on-site tests showed a pH of 5.9 (slightly acidic: milk is normally around 6.8 or so, Root Beer somewhere around a more acidic 4.0, cola beverages around 3.0, for reference…), relatively low TDS of about 100ppm, coming out of the ground cool (about 7°C, or 43°F), with very little dissolved Oxygen (about 6.0ppm) and faintly carbonated (300ppm CO2). It reportedly didn’t taste too good, but having foolishly missed out on tasting it, I don’t know why.

There were hints that perhaps contamination from surface water – like rain trickling through bison poo – but quite some time ago they sealed the spring up to protect it from that kind of thing. This is the actual spring now:

Appolinaris Spring is a concrete box in the ground with locked metal tops...
Even so, the signs still try to discourage people from drinking the water coming from the pipes that lead out of the spring, which I take to be the park service covering themselves just in case someone claims to get sick from it. (“Hey, we TOLD you not to drink it!”).

Appolinaris: This spring water has been used by visitors since early days of the park.  However modern water tests show periodic contamination.  Park waters, even though clear and running are subject to pollution by wildlife.  As with all untreated water, purify before drinking.
Periodic pollution by wildlife? What the…

The northern end of a south-bound bisonOh, right. Natural bottled-spring-water flavor. Hey, it’s natural, it’s got to be good for you, right?

And to end this post on a complete and totally baffling non-sequitur: the student lounge I’m sitting in right now has a television constantly tuned to some cheesy mass-media channel. Today it’s “E!®”. I overheard something on it just now that made me sit up and take notice: Evidently “Leprechaun” made a profit. Wow.

One never knows what kind of amazing things one might learn at college…

Environmental Chemistry Field Trip – Day 1, part 1

I can think of a number of things to complain about with regards to living where I do. However, it is nice that we live near enough to Yellowstone to day-trip there. In fact, it’s close enough for my local college to take field-trips there – which we did.

Environmental Chemistry spent the weekend there, examining the area, discussing the chemistry of the natural waters and geothermal features, and collecting samples (yes, we had a permit for this…).

We started with a stop by the side of the Madison River to collect a sample of the surface water. Clear, cool (12°C, or about 55°F), mildly basic (pH of about 8.0), and a TDS reading of about 300ppm, which is roughly the same as mildly to moderately hard tapwater, I suppose.

sampling water from the Madison river

The sampling device -seen being hurled over the water here – is kind of interesting – it’s a hollow tube (a bit of plastic pipe) with two spring-loaded balls that slam shut on either end to trap the water inside when you tug on the string. That lets you throw the device out and trigger it when it gets to the precise spot that you want to take a sample from.

We made a brief stop at Beryl Spring afterwards. We didn’t do any sampling here, but we did talk about acid-sulfate water systems. “Reduced” sulfur – as Hydrogen Sulfide gas – comes boiling out from underground along with steam, and ends up being oxidized by oxygen from the air to become sulfate in the end – combining with the water and forming sulfuric acid.

Sulfur-encrusted pipe at Beryl Spring

Of course, it doesn’t go from sulfide to sulfate all at once. There’s a stop along the way as elemental sulfur. The whitish-yellow stuff here is crystals of elemental sulfur. The black stuff you see is…also crystals of elemental sulfur. The difference is just how the atoms of sulfur collect together. The black form is actually a little less stable than the yellow, so it tends to form first, but then slowly convert to the yellow form over time as the sulfur atoms settle into a more stable arrangement. Being a chemistry class, we didn’t really discuss the possible microbial activity that might be involved here. Note the small patch of dark-green there. I suppose this could be a “Green Sulfur Bacteria“, which does something like photosynthesis except that it makes sulfur instead of oxygen in the process. These are normally anaerobic but perhaps the concentration of hydrogen sulfide (H2S) and carbon dioxide gas coming out of the ground right there is enough to crowd out the oxygen. Alternatively, it could just be a heat-loving cyanobacterium or something.

I really wish I wasn’t too poor to buy a good field microscope to go along with the good lab microscope that I am also too poor to buy…

The last two stops of the day – Appolinaris Spring and Narrow Gauge Spring – will be in the next post…

This weekend should be worth at least one decent post…

This weekend, one of the two of this semester’s classes that I have not yet used for a “what I learned in school today” post took a field trip.

Yes, Our “Environmental Chemistry” lab went to Yellowstone National Park and (legally – we had a permit and everything) did some water sampling. We got some on-site lectures about the types of water systems in the park, considerations involved in sampling things, and so on. All in all, I thought it was pretty interesting, but after spending the entire weekend either driving to or from the park or walking around in the park I’m a bit exhaustipated. Plus, bummed out that I can’t afford a good portable field microscope to go with the regular microscope which I also can’t afford. Woe unto me. I imagine the permit we had would have allowed me to also dangle some slides in the water to look at.

I did record a GPS track of both days field-trips, I got ICBM addresses for our sampling sites, and a number of photographs with my cheap and ancient digital camera along the way. Give me some time and I’ll get at least one real post out of it.

Meanwhile, a bit of trivia: “The Microsoft Network” search system is pretty Fupped Duck. I do get the occasional obviously relevant hit from one of their searches, but the great majority seems to be “hits” from random one-word searches, many of which seem to refer to words that appear nowhere on the site (and others of which are so broad I have no idea how many pages some MSN user would have to click through before hitting my site. For example, while I like to think I’m making a reasonable effort to do interesting science blogging, I’m having trouble imagining that this blog would show up in the first few pages for a search consisting solely of the word “science”…which one of the recent hits seemed to show.

Actually, this probably has less to do with users than with Microsoft itself – the hits for this don’t appear to be loading real views (it pulls one page and doesn’t reference, for example, images) though it is coming from “The Microsoft Network” addresses. Perhaps Microsoft has one of their bots masquerading as a real user (the user-agent string looks like regular “Internet Explorer 7″)…even the IP address resolves to a bogus name ” bl2sch1082217.phx.gbl.”, for example) which doesn’t resolve back the other way. Of course, it’s also possible the hit is ENTIRELY bogus and the “referer” tag that seems to indicate this is also faked. Perhaps it’s time to start blocking Microsoft…or maybe just messing with them. This apparent standards abuse and obfuscation of what exactly it is that they’re trying to do with my blog (and messing up my logs!) kind of bugs me. (Moral of the story is probably “Everybody should just use Google“…)

Sure “Cardboard Sarcophagus Instructions” is a pretty weird search, too, coming from Google, but at least I know why THAT one got here. I doubt the searcher – possibly from the Memphis, Tennessee area – was really searching for metaphors for expired JellO boxes.

The Unbearable Limeness of Being

I awaken. Am I alive? The temperature is neither extremely hot nor extremely cold, so I’m apparently not in some punishment-afterlife. And there’s no beer volcano or stripper-factory, so this obviously isn’t heaven. On the other hand, I am experiencing the usual persistent discomfort involved with waking up early in the morning. On the assumption that Catholic “purgatory” would be more dull, I will assume I am still alive, and had better get up and get to class.

Since my previous experiment, I have obviously had to revise my original hypothesis. Since the last caused me no ill effects, I had to abandon the notion that expired gelatin products become a deadly poison. Instead, as I consume this batch of official, non-sugarless Jell-O®-brand Gelatin (Lime flavored), I operate on a new hypothesis:

“Expired instant gelatin products from intact packaging will not harm me if I eat it.”

My precious stock of expired JellO® is depleted by one more box, the packet ripped from its cardboard sarcophagus, the contents prepared according to the standard instructions, and consumed hastily last night (the animation from the previous post is the actual container of prepared Lime JellO® made from digital photographs taken between helpings.). You can see the old-style date code on the box. According to Carolyn Wyman’s “JELL-O: A Biography”, the code indicates that it was packaged in 2003 (the “3” at the beginning of the code), on the 343rd day of the year, in the San Leandro (California) packaging facility. Although there is no official “expiration date” shown, given the “expected shelf life” of 24 months, this package is approximately 2 years out of date. And I ate it. I appear to have suffered no ill effects. Not even a decent sugar-rush: the entire box contains 320 calories, barely equivalent to a package of Twinkies®. The flavor even appeared to be perfectly normal. Mmmmmm, Lime JellO…

When I took it out to eat it, I did spot a beautiful if alarming sight, though:

The crystalline-appearing sheets of growth from the edge of the bowl into the gelatin was slightly disturbing. Was I crystallizing something odd out of the gelatin/sugar/flavor solution? The growth resembled infiltration of mold into the gelatin medium enough to slightly worry me. But only slightly.

In fact, as I had most suspected, these turned out to be ice crystals. Quite pretty, but they started slowly melting away after the bowl was allowed to sit at room temperature for fifteen minutes or so – plus, they crunched when I ate them just like ice. Thus encouraged, I ate the gelatin and went to bed. And here I am (sitting in the student lounge between “History of Western Art” and “Introduction to Philosophy”) happily blogging away, apparently unharmed.

Does this prove that expired instant gelatin is harmless? Well, no, not exactly. Scientists never really “prove” anything. Instead, we attempt to “falsify” our hypotheses and theories as best we can. This is where the concept of the “null hypothesis” comes in.

The “Null Hypothesis” here is the situation that, if true, falsifies my hypothesis. In this case, it would be “Expired instant gelatin products from intact packaging will harm me if I eat it.”. However, I did eat expired gelatin products from an intact package and was NOT harmed. Therefore I must “reject the Null Hypothesis”…and therefore my experimental evidence does not fail to support my hypothesis! SUCCESS!

If we are unable to find a condition which renders our hypothesis or theory incorrect after many and varied tests, ideally by several different researchers, then we can be confident that our hypothesis or theory is correct, but we don’t necessarily KNOW that there isn’t some odd undiscovered exception that we don’t know about.

Two samples (this one and the previous sugarless-orange one) is hardly a large number of trials. This doesn’t prove that expired JellO® is always safe, but since I know of no plausible way by which an intact package of instant gelatin could become hazardous I feel pretty comfortable that expired gelatin from intact packaging won’t harm me.

If the package is not intact and contains a fuzzy green lump instead of the usual powder, then it’s a whole other situation, obviously…

I do still have three or four more boxes of the sugarless generic expired gelatin – perhaps I can come up with some more tests. Meanwhile, I do hope that my incredibly brave, life-threatening experiments here will relax nervous expired-JellO eaters everywhere…

If I Win It…

One topic that I have hoped to emphasize much more on this blog is amateur science, and in particular (given my educational background) amateur Microbiology.

Don’t be dissuaded by my use of the word “amateur” here. I don’t mean “not really” science (i.e. the microbiological equivalent of the “baking soda volcano”). Rather, here I’m using “amateur” in its proper etymological sense – science done for the love of it. I don’t just mean my brief series of experiments on the toxicology of expired JellO®. I mean actual microbiology with potential practical application as well as educational value. Unfortunately, there are a few bits of equipment for this that I can’t reasonably cobble together out of spare parts or repurposed household appliances. A microscope, for instance. Or a dry-ice maker.

Being a full-time college student, I’m poor, and can’t afford a microscope. A decent ordinary “brightfield” microscope appears to cost about $400. Bonus materials like a “darkfield” condensor are extra, unless I think I can rig up an equivalent on my own. A nicer digital camera to take pictures with to share with you, my loyal reader(s) would add some more to the cost. Even in the case of equipment and supplies improvised from more ordinary and readily-available materials (pressure-cooker=”autoclave”), there is still a cost. Woe unto me, what shall I do?!?!?

For the moment, I shall revert to the time-honored traditions of “begging” and “hoping”…

You see, there appears to be a scholarship available for bloggers who are full-time college students. Why, what a coincidence! I blog…and I’m a full-time college student! What luck!

There appears to be a US$10,000 (that’s almost 10000 CANADIAN dollars!). It’s not explicitly stated but last year they also had $1,000 “runner-up” awards as well. Here, then, is my pledge to you all.

Should I be selected as a finalist for this scholarship competition, I will eat 2-year-old JellO! Furthermore, if I were to actually be selected to win a $1000 scholarship, I will buy a real microscope and be able to blog my microbiology experiments and studies much more vividly. I will also blog the design and construction of my own amateur microbiology lab, to the extent that I can afford. (Well, I was ALSO going to do this anyway, but with a scholarship I’d actually be able to start doing it…)

Were I to be selected to win the full $10,000 scholarship I propose to go absolutely Nucking Futs, with a microscope, a nice new digital camera, dry-ice maker and plenty of CO2, perhaps some dedicated hosting for this blog, and a complete collection of useful microbiology equipment (mostly improvised still, but that’s half of the education right there…). Furthermore, should my readers demand it, I might even be persuaded to drink a cup of fresh Lysogeny Broth!

Come on, who needs this money and attention more – me, or some wealthy (compared to me) graduate student over on scienceblogs.com? I bet none of them would eat 2-year-old JellO or drink E.coli Chow for it, would they?

10 Finalists are to be announced October 7th, from what I understand…wish me [good] luck…
UPDATE: I made the finals, though my fame doesn’t seem to be carrying along a rose-petal-strewn path to victory yet…

Art historians – do they minor in Purple Prose?

Let us read from the Book of “Art Across Time”, chapter one, page 36:

“This particular painting seems to represent either a ritual or a supernatural event. In contrast to the animals, which are nearly always in profile, this creature turns and stares out of the rock. His pricked-up ears and alert expression suggest that he is aware of an alien presence.”

Wow, that must be one exceptionally detailed and well-preserved cave-painting, to convey all of that. Let’s have a look:

Okay…to me the “head” looks like an indistinct smear, with spots that a human mind – tuned to recognize patterns, especially faces, even if the patterns don’t actually exist – might interpret as some kind of face. To me, it looks kind of like a crudely-drawn cartoon-animal face, with overwhelmed-Charlie-Brown-style bugeyes, a button nose, and the tongue hanging out of one side of its mouth. Yet, somehow, I don’t feel inclined to suggest that this is what is actually there. Personally, I’d be more inclined to suspect that the artist (estimated to have lived 13000-15000 years ago) had trouble finishing the drawing and gave up. Yet if you poke around for information about this image, you find all kinds of breathless prose about it. So, where does all the poetic language about the possible “meaning” and interpretation of the Trois-Frčres “Sorcerer” come from?

I suspect it all comes not from the seemingly rare photographs of the original cave-painting, but from the famous and heavily-embellished sketch made by Henri Breuil:

Yeah, that’s not what I see in the photograph of the original, either.

Apparently, this cave-painting is about 13 feet off of the floor. Monsieur Breuil described having to stand with one foot on a small projecting rock, then half-turn and sit up against the cave wall while trying to juggle his light and drawing implements to make hist sketch.  Sounds to me like the cave-painting is in a hard-to-reach spot, perhaps supporting my “artist had trouble drawing there” hypothesis? I also can’t tell from the original if all of the figure was painted at the same time, or if perhaps someone started out drawing a deer or something of the sort (the hind legs look about right for that proportionally, prior to the ‘human-lower-leg’ part), and hundreds of years later some wiseguy came along and drew human-type lower legs and feet on the end of the deer’s legs as a joke, for that matter.

The Art History class is interesting, but the amount of speculative-sounding interpretation of the art and architecture without supporting citations is something of a culture-shock to me after the last couple of years for more “hard-science” classes.

Anybody see anything there in that original painting that I’m missing? Or for that matter, know where to find a GOOD photograph of it?

I am decidedly indecisive tonight…

I actually have a number of potential blog topics lined up now, and I can’t decide which one to do next…

  • “What I Learned In School Today: The Burden of Proof for Art Historians is Somewhat Lower Than For ‘Harder’ Sciences” (the Trois-Freres “Sorcerer”)
  • “What I Learned In School Today: Socrates Thinks Shrinkwrap Licenses Are Good”
  • Why Microbial Fuel Cells Work
  • What’s a “Clone Library”? (Since I’m trying to make one…)
  • Attention Getting Ploys for the Blog (should I promise to drink a cup of Lysogeny Broth when I reach 25 active readers?…)
  • What I Would Do With “Blogging Scholarship” Money (build my Hillbilly Biotech lab, and blog it.)
  • The Office of Technology Assessment Is Not Enough (arrogant amateur policy thoughts…)
  • What I Want To Be When I “Grow Up” (in a manner of speaking).

Anything in particular interest any of you regular or accidental (e.g. Google®-searchers) readers?

And, yes, I will follow through with the Lime JellO® experiment as promised soon.